

Synthesis and NMR analysis of ¹³C-labeled oligosaccharides corresponding to the major glycolipid from *Mycobacterium leprae*

Ximao Wu^a, Jose-R. Mariño-Albernas^a, France-Isabelle Auzanneau^a, Vicente Verez-Bencomo^b, B. Mario Pinto^a*

^aDepartment of Chemistry, Simon Fraser University, Burnaby, B.C., Canada, V5A 1S6
^bLaboratory for Carbohydrate Chemistry, Facultad de Química, Universidad de la Habana and Centro
Nacional de Biopreparados, Ciudad Habana, Cuba

Received 4 September 1997; accepted in revised form 10 November 1997

Abstract

An improved synthesis of propyl 4-O-(3,6-di-O-methyl- β -D-glucopyranosyl)-2,3-di-O-methyl- α -L-rhamnopyranoside, a disaccharide corresponding to the phenolic glycolipid of Mycobacterium leprae using a trichloroacetimidate as a glycosyl donor is described. The synthetic strategy is also applied to the preparation of three corresponding disaccharide analogues containing 13 C-labeled methyl groups. The preparation of the trisaccharide, propyl 2-O-[4-O-(3,6-di-O-methyl- β -D-glucopyranosyl)-2,3-di-O-methyl- α -L-rhamnopyranosyl]-3-O-methyl- α -L-rhamnopyranoside is also reported. The di- and tri-saccharides were characterized by 1 H and 13 C NMR spectroscopy. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: Mycobacterium leprae; Synthesis; Oligosaccharide haptens; ¹³C-labeled

1. Introduction

Mycobacterium leprae produces a unique phenolic glycolipid [1,2]:

$$\begin{array}{ccc} OAcyl & OCH_3\\ & | & |\\ R=H_4C_6CH_2(CH_2)_{17}CHCH_2CH(CH_2)_4CHCHCH_2CH_3\\ & | & |\\ OAcyl & OCH_3 \end{array}$$

Antibodies against oligosaccharides of this glycolipid have been detected in the sera of leprosy patients [2–5], suggesting that the oligosaccharides might be of value as diagnostic reagents or as components of vaccines. Synthetic [6–18] and conformational [18] studies of the di- and tri-saccharides have been reported, and immunochemical studies [7,8] have shown that the disaccharide 1

^{*} Corresponding author.

bound to antibodies and was also effective in the serodiagnosis of leprosy. The design of superior immunodiagnostic reagents requires a detailed understanding of the interaction between hapten and antibody. The use of ¹³C-labeled compounds should thus prove useful [19–25].

We report herein the improved synthesis and NMR characterization of propyl 4-O-(3,6-di-O-methyl- β -D-glucopyranosyl)-2,3-di-O-methyl- α -L-rhamnopyranoside and three corresponding ¹³C-labeled disaccharide analogues. These compounds will serve as initial substrates with which to test the NMR methods of analysis. The preparation and NMR of the trisaccharide hapten, propyl 2-O-[4-O-(3,6-di-O-methyl- β -D-glucopyranosyl)-2,3-di-O-methyl- α -L-rhamnopyranoside, is also reported.

2. Results and discussion

The unlabeled glycosyl donor 8 was prepared from the known diacetate 3 [6,15]. The corresponding labeled derivative 9 was synthesized from the benzoxymethylether 1 [26]. Methylation of 1 with an excess of methyl-¹³C iodide gave the dimethyl ether 2 in 93% yield. The ¹H NMR spectrum of 2 showed two methyl signals which appeared as doublets (${}^{1}J_{13_{CH}} = 141$ and $142 \,\mathrm{Hz}$), and signals corresponding to H-3, H-6 and H-6' showed additional coupling (4.5, 2.5, and 4 Hz, respectively) to the labelled ¹³CH₃. Hydrolysis of compound **2** gave the triol 4 that was, in turn, acetylated to yield the triacetate 5. Treatment of 3 and 5 with hydrazine acetate [27] gave the corresponding hemiacetals 6 and 7, which were converted to the trichloroacetimidates 8 and 9, respectively, by reaction with trichloroacetonitrile and K₂CO₃ [28].

The preparation of disaccharides **24–27** and trisaccharide **32** was accomplished using allyl 4-*O*-benzyl-α-L-rhamnopyranoside **10** [29] as a common precursor. Methylation of the diol **10** with methyl iodide in DMF containing sodium hydride gave the dimethylated compound **11** quantitatively. Regioselective monomethylation of the equatorial hydroxyl group of the diol **10** with methyl iodide was achieved via the corresponding stannylene acetal [30] and gave the methyl ether **12** (71%). The regioselectivity of the methylation reaction was confirmed by the downfield shift of C-3 (71.5 to 80.0 ppm) in the ¹³C NMR spectrum; the shift of C-2 (67.3 ppm) was similar to that (67.9 ppm) in

the spectrum of 10. The labeled compound 13 was similarly obtained by monomethylation of 10 with ¹³C-labeled methyl iodide. Compound 13 (54%) was, in turn, methylated at O-2 with unlabeled methyl iodide to give the dimethyl ether 14 quantitatively. The compound was labeled at O-3 (not)-2) because of its proximity to the glucosyl unit at O-4 in the disaccharide, with the expectation that this would facilitate analysis of conformations about the glycosidic linkage. Hydrogenolysis of the benzyl ether in compounds 11 and 14 led, as expected, to reduction of the allyl group to a propyl group, and gave the glycosyl acceptors 15 and 16, respectively. Substitution at O-3 by a ¹³C-labeled methyl group and at O-2 by an unlabeled methyl group in compound 16 was confirmed by an inverse ¹³C–¹H correlation NMR experiment, optimized for longrange correlations. The spectrum showed an intense cross peak between the ¹³C-labeled methyl signal (56.9 ppm) and the H-3 signal (3.43 ppm), corresponding to ${}^3J^{13}{}_{CH_3,H-3}$, and a less intense cross peak between the unlabeled methyl signal (58.9 ppm) and the H-2 signal, corresponding to $^{3}J_{CH_{3},H-2}$. An additional crosspeak was observed between the ¹³C labeled methyl signal and the H-4 signal (3.54 ppm), corresponding to ${}^4J^{13}_{CH_3,H=4}$. The allyl glycoside 11 was also treated with palladium (II) chloride [31] and the resulting hemiacetal 17 was hydrogenolyzed to give the diol 18. Acetylation of 18 gave the diacetate 19 which was used as a glycosyl donor in the synthesis of the trisaccharide 30 (see below).

Glycosylation reactions with the trichloroacetimidate derivatives 8 and 9 were performed under catalysis with triethylsilyl triflate (TESOTf). Hence, glycosylation of 15 and 16 with the trichloroacetimidate 8 gave disaccharides 20 (99%) and 21 (93%), respectively. Similarly, glycosylation of 15 and 16 with the labeled trichloroacetimidate gave disaccharides 22 (71%) and (79%), respectively. Zemplén deacetylation of disaccharides 20-23 gave the deprotected disaccharides 24–27, respectively. The ¹³C NMR spectra of these disaccharides indicated that the $^{3}J_{CH_{3}-O-C-H}^{13}$ coupling pathways required for further NMR experiments with antibody-hapten complexes e.g., isotope-filtered experiments were clearly present (e.g. Fig. 1).

The trisaccharide **30** was synthesized as follows. The disaccharide **28** was prepared by glycosylation of the acceptor **12** with the diacetate **19** in the presence of BF₃–Et₂O as a catalyst [17]. The configuration of the glycosidic linkage was confirmed by the ${}^{1}J_{C-1,H-1}$ coupling constant of 171 Hz [32]. Zemplén deacetylation of disaccharide **28** gave the glycosyl acceptor **29** which was, in turn, glycosylated with the trichloroacetimidate **8** to give the trisaccharide **30**. Deprotection of the trisaccharide **30** by deacetylation followed by hydrogenolysis afforded the trisaccharide **32**.

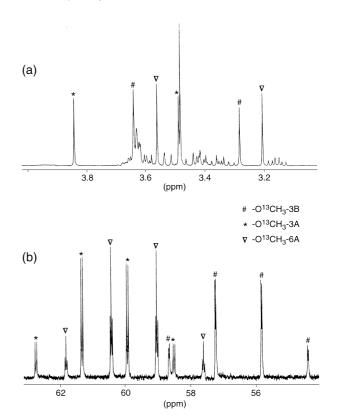


Fig. 1. Partial (a) ¹H and (b) ¹³C NMR spectra of the ¹³C-labeled disaccharide **27**.

3. Experimental

General methods.—Melting points (mps) were measured on a Fisher-Johns melting point apparatus and are uncorrected. Optical rotations were measured on a Rudolph Research Autopol II automatic polarimeter. ¹H NMR (400.13 MHz), ¹³C NMR (100.6 MHz) spectra were recorded on a Bruker AMX-400 NMR in CDCl₃ (internal standard, for 1 H: residual CHCl₃ δ 7.24; for 13 C: CDCl₃ δ 77.0), unless otherwise stated. Chemical shifts and coupling constants were obtained from a first-order analysis of the spectra. ¹H-¹H COSY and inverse ¹³C-¹H correlated spectra were acquired with data sets of 2K(F2)×512(F1), the FIDs were zero-filled to a $1K(F2)\times 1K(F1)$ data set, and processed using a sine-squared apodization function with a shift of 2 in F1 and F2. The spectra were displayed in the absolute value mode. For the inverse detection experiments, a 4-pulse sequence was used for the ${}^{1}H\{{}^{13}C\}-{}^{13}C$ correlation [33]; the same sequence, incorporating a BIRD pulse in the preparation period, was used for the ¹H-¹³C correlation [34]. The digital resolution in the inverse ¹³C⁻¹H spectra was 1 Hz/pt. The inverse ¹³C⁻¹H spectra for detecting long-range correlation were acquired with data sets of 1K(F2)×250(F1). The mixing time was 90 ms and the digital resolution was 2 Hz/pt. Microanalyses were measured with an Elemental Analyzer-MDD 1106. The percentage of carbon was detected as the total number of moles of labeled and unlabeled CO₂ produced by the molecule. Whereas the molecular weight of a compound is sensitive to the presence of ¹³C, the weight of carbon that it contains measured by elemental analysis is insensitive to the isotopic labeling. This was taken into account in the calculated analyses for the labeled compounds in which the molecular weights were calculated using 13.01 as the atomic weight of the labeled carbon while 12.01 was used for the calculation of the total weight of labeled and unlabeled carbon in the molecule.

Thin-layer chromatography (TLC) was performed on precoated aluminum plates with Kieselgel silica gel 60 F₂₅₄ (E. Merck) and detected with UV light and/or charred with 5% sulfuric acid in EtOH solution. All compounds were purified by flash column chromatography with Kieselgel silica gel 60 (230-400 mesh) according to a published procedure [35]. Solvents were dried and distilled according to standard procedures [36]. Reactions performed under N₂ were carried out in deoxygenated solvents and transfers under N₂ were effected by means of standard Schlenk-tube techniques. Organic solutions were dried over Na₂SO₄ and concentrated below 40 °C under reduced pressure. Methyl-13C iodide (99%-13C) was purchased from Sigma Company.

5-O-Benzoxymethyl-1,2-O-isopropylidene-3,6-di-O- 13 C-methyl- α -D-glucofuranose (2).—A solution of 5-O-benzoxymethyl-1,2-O-isopropylidene- α -Dglucofuranose 1 [26] (2.4 g, 6.9 mmol) in DMF (10 mL) was transferred under N₂ to a cooled suspension of NaH (1.4g, 60% by weight in oil, 34 mmol) in DMF (3 mL). After stirring for 30 min at 0° C, methyl $^{-13}$ C iodide (2 g, 14 mmol) was added dropwise and the reaction was allowed to proceed for 6h at room temperature. MeOH (4 mL) was added to destroy excess NaH, the mixture was poured into ice-water (50 mL), and the product was extracted with CH_2Cl_2 (2×50 mL). The extracts were washed with water (30 mL), dried, and concentrated. Chromatography of the residue (EtOAc-hexanes, 1:3) gave the title compound 2 as a syrup (2.4 g, 93%). ¹H NMR: δ 7.36 (m, 5 H, Ar), 5.86 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 4.88 (dd, 2 H, OCH₂O), 4.73 (d, 1 H, *J* 12 Hz, OC*H*HPh), 4.61 (d, 1 H, OCH*H*Ph), 4.58 (d, 1 H, H-2), 4.30

(dd, 1 H, $J_{4,3}$ 3 Hz, $J_{4,5}$ 9.5 Hz, H-4), 4.05 (m, 1 H, $J_{5,6}$ 2 Hz, $J_{5,6'}$ 3 Hz, H-5), 3.78 (dd, 1 H, ${}^3J_{\rm H}$, ${}^{13}{\rm C}$ 4.5 Hz, H-3), 3.76 (dt, 1 H, $J_{6,6'}$ 11 Hz, ${}^3J_{\rm H}$, ${}^{13}{\rm C}$ 2.5 Hz, H-6), 3.60 (dt, 1 H, ${}^3J_{\rm H}$, ${}^{13}{\rm C}$, 4 Hz, H-6'), 3.39 (d, 3 H, ${}^1J_{\rm H}$, ${}^{13}{\rm C}$ 141 Hz, ${\rm O}^{13}{\rm CH}_3$), 3.37 (d, 3 H, ${}^1J_{\rm H}$, ${}^{13}{\rm C}$ 142 Hz, ${\rm O}^{13}{\rm CH}_3$), 1.50, 1.32 [2s, 2×3 H, (CH₃)₂C]. ${}^{13}{\rm C}$ NMR: δ 138.0, 128.4, 127.8, 127.6 (Ar), 111.8 [(CH₃)₂C]; 105.1 (C-1), 94.7 (OCH₂O), 83.5 (C-3), 81.0 (C-2), 78.7 (C-4), 73.8 (C-5), 73.0 (C-6), 69.6 (OCH₂Ph), 59.3 (qt, ${}^1J_{13_{\rm C,H-6}}$ 141 Hz, ${}^3J_{13_{\rm C,H-6}}$ \sim 3 Hz, ${\rm O}^{13}{\rm CH}_3$ -6), 57.2 (qd, ${}^1J_{13_{\rm C,H}}$ 142 Hz, ${}^3J_{13_{\rm C,H-6}}$ 5 Hz, ${\rm O}^{13}{\rm CH}_3$ -3), 26.8, 26.4 [2×(CH₃)₂C]. Anal. Calcd for ${\rm C}_{17}{}^{13}{\rm C}_2{\rm H}_{28}{\rm O}_7$: C, 61.59; H, 7.63. Found: C, 61.84; H, 7.68.

2,4-Di-O-acetyl-3,6-di-O-methyl-α-D-glucopyranosyl trichloroacetimidate (8).—Hydrazine acetate (250 mg, 2.8 mmol) was added to a solution of 1,2,4tri-O-acetyl-3,6-di-O-methyl- α , β -D-glucopyranose [6,15] **3** (0.76 g, 2.2 mmol) in DMF (12 mL) and the reaction mixture was stirred for 24h under N₂ at room temperature. The product was extracted with dichloromethane and washed with water. The organic phase was dried and concentrated to give the crude hemiacetal 6 as a syrup (910 mg) that was dried overnight under high vacuum and dissolved in anhydrous CH₂Cl₂ (50 mL). Anhydrous K₂CO₃ (3.1 g, 23 mmol), and trichloroacetonitrile (3.2 mL, 32 mmol) were added to the mixture that was stirred for 48 h at room temperature. Excess K₂CO₃ was removed by filtration through Celite 545 and the filtrate was concentrated. Chromatography (EtOAc-hexanes, 1:3) of the residue gave the trichloroacetimidate 8 as a colorless syrup (970 mg, 46%); its purity was confirmed by NMR spectroscopy and it was used directly in the glycosylation reactions. ¹H NMR: δ 8.60 (s, C=NH), 6.48 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 5.08 (dd, 1 H, $J_{4,3} + J_{4,5} = 20$ Hz, H-4), 4.98 (dd, 1 H, $J_{2.3}$ 10 Hz, H-2), 4.01 (m, 1 H, H-5), 3.80 (t, 1 H, H-3), 3.46 (dd, 1 H, J_{6.5} 3 Hz, $J_{6,6'}$ 11 Hz, H-6), 3.43 (dd, 1 H, $J_{6',5}$ 5 Hz, H-6'), 3.46, 3.40 (2 s, 2×3 H, 2×OCH₃), 2.11, 2.02 (2 s, 2×3 H, $2\times\text{CH}_3\text{CO}$). ¹³C NMR: δ 169.7, 169.3 $(2\times C = O)$, 160.8 (C = NH), 93.5 (C-1), 91.0 (CCl₃), 78.2 (C-3), 71.7 (C-2), 71.6 (C-5), 71.2 (C-6), 69.8 (C-4), 59.9, 59.3 (2×OCH₃), 20.7, 20.5 (2×CH₃CO). 2,4-Di-O-acetyl-3,6-di-O- ^{13}C -methyl- α -D-glucopyranosyl trichloroacetimidate (9).—A solution of 2 (2.3 g, 6.3 mmol) in a mixture of dioxane (13 mL) and 0.5 N ag HCl (16 mL) was refluxed for 1 h. Toluene was added and the solvents were evapo-

rated. Chromatography (EtOAc-hexanes-MeOH,

4:4:1.5) gave an anomeric mixture of 3,6-di-O-¹³C-

methyl- α,β -D-glucopyranose (4) as a white solid (2.1 g, 100%). ¹H NMR[D₂O, internal standard: trimethylsilyl-(2,2,3,3-tetradeutero)prosodium pionate, δ 0.0]: δ 5.14 (d, $J_{1,2}$ 4 Hz, H-1 α), 4.58 (d, $J_{1,2}$ 8 Hz, H-1 β), 3.56 (d, ${}^{1}J_{\rm H}$, ${}^{13}{\rm C}$ 143 Hz, O¹³CH₃- α), 3.33 (d, ${}^{1}J_{\rm H}$, ${}^{13}{\rm C}$ 143 Hz, O¹³CH₃- α). A solution of the triol 4 (2.1 g, 6.3 mmol) in Ac₂O-pyridine (1:2, 30 mL) was stirred for 24 h at room temperature. The mixture was poured into ice-water (200 mL) and the product was extracted with CH₂Cl₂(2×50 mL). The extracts were washed successively with 1 N ag HCl, satd ag NaHCO₃, satd NaCl, combined, dried, and concentrated. Chromatography of the residue (EtOAc-hexanes, 1:2) gave an anomeric mixture of 1,2,4-tri-Oacetyl-3,6-di- O^{13} C-methyl- α,β -D-glucopyranose (5) as a white solid (1.5 g, 74%). The triacetate 5 (550 mg, 1.6 mmol) was converted to the hemiacetal 7 as described for the preparation of the hemiacetal 6. The crude hemiacetal 7 (570 mg) was then converted to the trichloroacetimidate 9 as described for the preparation of the trichloroacetimidate 8. The trichloroacetimidate 9 was purified by chromatography (EtOAc-hexanes, 1:3) and was obtained as a colorless syrup (410 mg, 64%); its purity was confirmed by NMR spectroscopy and it was used directly in the glycosylation reactions, $[\alpha]^{22}_{D}$ +96.5° (c 0.48, CH₂Cl₂). ¹H NMR: δ 8.6 (s, C = NH), 6.48 (d, 1 H, $J_{1,2}$ 4 Hz, H-1), 5.08 (dd, 1 H, $J_{4,3} + J_{4,5} = 20$ Hz, H-4), 4.98 (dd, 1 H, J_{2.3} 10 Hz, H-2), 4.01 (m, 1 H, H-5), 3.80 (td, 1 H, ${}^{3}J_{3}$, 13 C 6 Hz, H-3), 3.43 (m, 2 H, H-6, H-6'), 3.46 (d, 3 H, ${}^{1}J_{H}$, ${}^{13}C$ 142 Hz, $O^{13}CH_{3}$), 3.31 (d, 3 H, ${}^{1}J_{H,}$ ${}^{13}C$ 142 Hz, O¹³CH₃), 2.11, 2.02 (2 s, 2×3 H, $2 \times \text{CH}_3\text{CO}$). ¹³C NMR: δ 169.7, 169.4 ($2 \times \text{C} = \text{O}$), 160.7 (C=NH), 93.4 ($J_{C,H}$ 179.9 Hz, C-1), 90.9 (CCl₃), 78.2 (C-3), 71.6 (C-2), 71.5 (C-5), 71.2 (C-6), 69.7 (C-4), 59.9 (qd, ${}^{1}J_{13_{\text{C,H}}}$ 142 Hz, ${}^{3}J_{13_{\text{C,H-3}}}$ 6 Hz, O¹³CH₃-3), 59.3 (qt, ${}^{1}J_{13_{\text{C,H}}}$ 142 Hz, ${}^{3}J_{13_{\text{C,H-6}}}$ 3 Hz, $O^{13}CH_3$ -6), 20.8, 20.5 (2×CH₃CO).

Allyl 4-O-benzyl-2,3-di-O-methyl-α-L-rhamnopy-ranoside (11).—A solution of allyl 4-O-benzyl-α-L-rhamnopyranoside 10 (3.2 g, 11 mmol) [29] in DMF (20 mL) was transferred under N_2 to a suspension of NaH (2.0 g, 60% by weight in oil, 82 mmol) in DMF (10 mL) stirred at 0 °C. After stirring for 15 min at 0 °C, methyl iodide (2 mL, 32 mmol) was added slowly to the mixture that was then stirred for 2 h at room temperature. MeOH (5 mL) was added to destroy the excess NaH and the mixture was poured into ice-water (60 mL). The product was extracted with CH₂Cl₂ (60 mL,

 $2\times30\,\mathrm{mL}$) and the extracts were combined, dried, and concentrated. Chromatography (EtOAc-hexanes, 1:3) of the residue gave 11 as a syrup (3.5 g, 100%), $[\alpha]^{22}_{D}$ -67° (c 1.5, CH₂Cl₂). ^{1H} NMR: δ 7.35 (m, 5 H, Ar), 5.89 (m, 1 H, $OCH_2CH = CH_2$), 5.23 (m, 2 H, OCH₂CH = CH_2), 4.91 (d, 1 H, J 11 Hz, OC*H*HPh), 4.89 (d, 1 H, $J_{1,2}$ 2 Hz, H-1), 4.60 (d, 1 H, OCH*H*Ph), 4.05 (m, 2 H, $OCH_2CH = CH_2$), 3.68 (m, 1 H, H-5), 3.62–3.60 $(m, 2 H, H-2, H-3), 3.51 (s, 6 H, 2 \times OCH_3), 3.43 (t, 4)$ 1 H, $J_{4,3} + J_{4,5} = 19$ Hz, H-4), 1.32 (d, 3 H, H-6). ¹³C NMR: δ 133.8 (OCH₂CH = CH₂), 128.3, 127.9, 127.5 (Ar), 117.3 (OCH₂CH = CH₂), 96.0 ($J_{C,H}$ 167 Hz, C-1), 81.5 (C-4), 80.4 (C-3), 77.4 (C-2), 75.2 (OCH_2Ph) , 67.8 (C-5 and $OCH_2CH = CH_2$), 59.0 (OCH₃), 57.7 (OCH₃), 17.8 (C-6). Anal. Calcd for C₁₈H₂₆O₅: C, 67.05; H, 8.14. Found: C, 66.98; H, 8.24.

4-O-benzyl-3-O-methyl-α-L-rhamnopyr-Allyl anoside (12).—A mixture of allyl 4-O-benzyl- α -Lrhamnopyranoside 10 (1.8 g, 6.1 mmol) and dibutyltin oxide (1.8 g, 7.2 mmol) in benzene (80 mL) was refluxed for 3 h with azeotropic removal of the water. The mixture was cooled to room temperature, toluene was added and the solvents were evaporated. The dried residue was dissolved in DMF (8 mL), methyl iodide (0.42 mL, 6.7 mmol) was added dropwise and the mixture was stirred overnight at 35-40 °C. The solution was concentrated and chromatography of the residue (EtOAc-hexanes, 1:1) gave the monomethyl ether 12 as a colorless syrup (1.3 g, 71%), $[\alpha]^{22}_{D}$ -89° (c 0.9, CH_2Cl_2). ¹H NMR: δ 7.36 (m, 5 H, Ar), 5.88 (m, 1 H, $OCH_2CH = CH_2$), 5.24 (m, 2 H, $OCH_2CH = CH_2$), 4.85 (d, 1 H, $J_{1,2}$ 2 Hz, H-1), 4.84, 4.62 (2×d, 1 H, J11 Hz, $2 \times OCHHPh$), 4.07 (dd, 1 H, $J_{2,3}$ 3.5 Hz, H-2), 4.06 (m, 2 H, $OCH_2CH = CH_2$), 3.72 (m, 1 H, H-5), 3.59 (dd, 1 H, $J_{3.4}$ 9.5 Hz, H-3), 3.50 (s, 3 H, OCH₃), 3.37 (t, 1 H, $J_{4,3} + J_{4,5} = 19$ Hz, H-4), 2.43 (bs, 1 H, O*H*), 1.30 (d, 3 H, H-6). ¹³C NMR: δ 133.9 $(OCH_2CH = CH_2)$, 138.6, 128.4, 127.9, 127.7 (Ar), 117.4 (OCH₂CH = CH_2), 98.3 (C-1), 81.8, 80.0 (C-3, C-4), 75.2 (OCH₂Ph), 68.0 (C-5), 67.9, 67.3 (C-2, $OCH_2CH = CH_2$), 57.4 (OCH₃), 17.9 (C-6). Anal. Calcd for C₁₇H₂₄O₅: C, 66.20; H, 7.86. Found: C, 66.42; H, 8.05.

Propyl 2,3-di-O-methyl-α-L-rhamnopyranoside (15).—The benzyl ether 11 (1.1 g, 3.5 mmol) was dissolved in EtOH–80% aq AcOH (1:2, 45 mL) and hydrogenolyzed overnight at 52 psi over Pd/C (10%, 0.10 g). The black solid was removed by filtration and the filtrate was concentrated to

dryness by coconcentration with toluene. Chromatography (EtOAc-hexanes, 1:1) of the residue gave the alcohol 15 as a colorless syrup (0.81 g, 100%), $[\alpha]^{22}_{D}$ -32.4° (c 0.7, CH₂Cl₂). ¹H NMR: δ 4.81 (d, 1 H, $J_{1,2}$ 2 Hz, H-1), 3.61 (dt, 1 H, OCH_aH_bCH₂CH₃), 3.58–3.57 (m, 2 H, H-2 and H-5), 3.51 (t, 1 H, $J_{4,3} + J_{4,5} = 19$ Hz, H-4), 3.45, 3.43 $(2 \text{ s}, 2 \times 3 \text{ H}, 2 \times \text{OCH}_3), 3.39 \text{ (dd}, 1 \text{ H}, J_{3,4}, 9.5 \text{ Hz},$ $J_{3,2}$ 3 Hz, H-3), 3.34 (dt, 1 H, OCH_a H_b CH₂CH₃), 1.57 (m, 2 H, OCH₂CH₂CH₃), 1.27 (d, 3 H, $J_{6.5}$ 6 Hz, H-6), 0.9 (t, 3 H, OCH₂CH₂CH₃). ¹³C NMR: δ 97.2 (¹*J*_{C,H} 167 Hz, C-1), 81.3 (C-3), 76.1 (C-2), 71.8 (C-4), 69.2 (OCH₂CH₂CH₃), 68.1 (C-5), 58.9, 56.9 (2×OCH₃), 22.8 (OCH₂CH₂CH₃), 17.7 (C-6), 10.6 (OCH₂CH₂CH₃). Anal. Calcd for $C_{11}H_{22}O_5$: C, 56.38; H, 9.48. Found: C, 56.43; H, 9.52.

Propyl 2-O-methyl-3-O-¹³C-methyl-α-L-rhamnopyranoside (16).—Allyl 4-O-benzyl- α -L-rhamnopyranoside 10 (1.6 g, 5.6 mmol) was selectively methylated at O-3 with methyl-¹³C iodide as described for the preparation of the unlabeled methyl ether 12. The dimethyl ether 13 was purified by chromatography (EtOAc-hexanes, 1:1) and isolated as a syrup (0.94 g, 54%). A solution of 13 (0.94 g, 3.0 mmol) in DMF (4.5 mL) was transferred under N2 to a cooled (0 °C) suspension of NaH (0.31 g, 60% by weight in oil, 7.9 mmol) in DMF (2 mL). After stirring for 30 min at 0 °C, methyl iodide (0.41 g, 6.1 mmol) was added dropwise and the reaction mixture was stirred under N₂ for 2h at room temperature. MeOH (2mL) was added to destroy the excess NaH and the reaction mixture was poured into ice-water (10 mL). The product was extracted with EtOAc (20 mL, $3\times10\,\mathrm{mL}$), the extracts were washed with water, combined, dried, and concentrated to give crude 14 as a syrup (1.1 g). The syrup was dissolved in EtOH-80% aq AcOH (1:2, 45 mL) and hydrogenolyzed overnight at 52 psi over Pd/C (10% on charcoal, 0.13 g). More catalyst (56 mg) was added and the reaction was allowed to proceed for 24h. The catalyst was removed by filtration through Celite 545 and the filtrate was extracted with CH_2Cl_2 (3×20 mL). The extracts were washed with satd aq NaHCO₃ (2×20 mL), combined, dried, and concentrated. Chromatography (EtOAc-hexanes, 1:1) of the residue yielded pure 16 as a colorless syrup (570 mg, 80% based on **14**), $[\alpha]^{22}_{D}$ -33.6° (c 0.7, CH_2Cl_2). ¹H NMR: δ 4.85 (d, 1 H, $J_{1,2}$ 2 Hz, H-1), 3.61 (m, 3 H, H-2, H-5, $OCH_aH_bCH_2CH_3$), 3.54 (t, 1 H, $J_{4,3} + J_{4,5} = 19$ Hz, H-4), 3.48 (s, 3 H, OCH_3 -2), 3.46 (d, 3 H, $J_{H_1}^{13}C$ 141 Hz, $O^{13}CH_3$ -3),

3.41 (dt, 1 H, $J_{3,4}$ 9.5 Hz, $J_{3,2}$ 3.5 Hz, ${}^{3}J_{H}$, ${}^{13}C$, 3.5 Hz, H-3), 3.36 (dt, 1 H, OCH_aH_bCH₂CH₃), 2.4–2.3 (bs, 1 H, O*H*), 1.60 (m, 2 H, OCH₂C*H*₂CH₃), 1.30 (d, 3 H, $J_{6,5}$ 6 Hz, H-6), 0.92 (t, 3 H, OCH₂CH₂CH₃). ${}^{13}C$ NMR: δ 97.2 (${}^{1}J_{C,H}$ 167 Hz, C-1), 81.2 (C-3), 76.1 (C-2), 71.8 (C-4), 69.2 (O*C*H₂CH₂CH₃), 68.1 (C-5), 58.9 (${}^{1}J_{C,H}$ 142 Hz, ${}^{3}J_{C,H-2}$ 5 Hz, OCH₃-2), 56.9 (qd, ${}^{1}J_{13_{C,H}}$ 142 Hz, ${}^{3}J_{13_{C,H-3}}$ 4 Hz, O¹³CH₃-3), 22.8 (OCH₂CH₂CH₃), 17.7 (C-6), 10.6 (OCH₂CH₂CH₃). Anal. Calcd for C₁₀¹³C₁H₂₂O₅: C, 56.13; H, 9.44. Found: C, 56.30; H, 9.47.

Propyl 4-O-(2,4-di-O-acetyl-3,6-di-O-methyl-β-Dglucopyranosyl) - 2,3 - di - O - methyl - α - L - rhamnopy ranoside (20).—A mixture of the acceptor 15 (192 mg, 0.82 mmol), the trichloroacetimidate 8 (415 mg, 0.95 mmol) and activated molecular sieves (4A) in anhydrous CH₂Cl₂ (20 mL) was stirred for 1 h under N_2 . The mixture was cooled to -78 °C triethylsilyl triflate(TESOTf) $(30 \,\mu L,$ 0.13 mmol) was added. After stirring for 15 min at -78 °C, the reaction was allowed to proceed 15 min at room temperature and quenched by addition of triethylamine (\sim 25 μ L). The molecular sieves were removed by filtration and the filtrate was concentrated. Chromatography (EtOAc–hexanes, 1:1) of the residue gave the disaccharide 20 as a colorless oil (420 mg, 100%), $[\alpha]^{22}_{\rm p}$ -51° (c 0.7, CH₂Cl₂). ¹H NMR: δ 4.98 (t, 1 H, $J_{4,3} + J_{4,5} =$ 18 Hz, H-4A), 4.90 (dd, 1 H, $J_{2,1}$ 8 Hz, $J_{2,3}$ 10 Hz, H-2A), 4.82 (d, 1 H, $J_{1.2}$ 2 Hz, H-1B), 4.74 (d, 1 H, H-1A), 3.61–3.51 (m, 4 H, H-6'A, H-6A, H-5B, $OCH_aH_bCH_2CH_3$), 3.56 (dd, 1 H, $J_{2,3}$ 3 Hz, H-2B), 3.48–3.30 (m, 5 H, H-3B, H-4B, H-3A, H-5A, $OCH_aH_bCH_2CH_3$), 3.48, 3.42, 3.38, 3.30(4s, 4×3) H, $4\times$ OCH₃), 3.34(dd, 1H, OCH_a H_b CH₂CH₃), 2.30, 2.50 (2s, 2×3 H, CH₃CO), 1.32(m, 2H, OCH₂CH₂CH₃), 1.13(d, 3H, H-6B), 0.96 (t, 3 H, $CH_2CH_2CH_3$). ¹³C NMR: δ 169.3, 168.9 (2×C=O), 100.9 (${}^{1}J_{C,H}$ 167 Hz, C-1A), 96.6 (${}^{1}J_{C,H}$ 167 Hz, C-1B), 81.5, 81.3 (C-3B, C-4B), 77.6, 76.7 (C-2B, C-6A), 73.0, 72.4, 72.0 (C-2A, C-3A, C-5A), 70.2 (C-4A), 69.3 (OCH₂CH₂CH₃), 67.0 (C-5B), 59.6, 58.9, 58.3, 57.0 (4×OCH₃), 22.6 (OCH₂CH₂CH₃), 20.8 ($2 \times CH_3CO$), 17.7 (C-6B), 10.5 (OCH₂CH₂CH₃). Anal. Calcd for C₂₃H₄₀O₁₂: C, 54.33; H, 7.87. Found: C, 54.42; H, 8.03.

Propyl 4-O-(2,4-di-O-acetyl-3,6-di-O-methyl-β-D-glucopyranosyl)-2-O-methyl-3-O-¹³C-methyl-α-L-rhamnopyranoside (21).—Glycosylation of the acceptor 16 (162 mg, 0.69 mmol) with the trichloroacetimidate 8 (297 mg, 0.68 mmol) was performed

as described for the preparation of disaccharide 20. The disaccharide 21 was purified by chromatography (EtOAc-hexanes, 1:1) and was isolated as a syrup (321 mg, 93%). ${}^{1}H$ NMR: δ 4.98 (t, 1 H, $J_{4,3} + J_{4,5} = 18 \text{ Hz}, \text{ H-4A}$, 4.90 (dd, 1 H, $J_{2,1}$ 8 Hz, $J_{2,3}$ 10 Hz, H-2A), 4.82 (d, 1 H, $J_{1,2}$ 2 Hz, H-1B), 4.74 (d, 1 H, H-1A), 3.59 (m, 1 H, H-5B), 3.61 (dd, 1 H, $OCH_aH_bCH_2CH_3$), 3.56 (dd, $J_{2,3}$ 3 Hz, H-2B), 3.56-3.51 (m, 2 H, H-6'A and H-6A), 3.48-3.42 (m, 3 H, H-3B, H-4B, H-5A), 3.43 (d, 3 H, $^1J_{13_{\text{C,H}}}$ 141 Hz, $O^{13}CH_3$ -3B), 3.48, 3.38, 3.32 (3s, 3×3 H, $3 \times OCH_3$), 3.44 (t, 1 H, $J_{3,2} + J_{3,4} = 20$ Hz, H-3A), 3.34 (dd, 1 H, OCH_a H_b CH₂CH₃), 2.30, 2.50 (2s, 2×3 H, $2\times$ CH₃CO), 1.32 (OCH₂CH₂CH₃), 1.13 (d, 3 H, H-6B), 0.96 (OCH₂CH₂CH₃). 13 C NMR: δ 101.0(C-1A), 96.7(C-1B), 81.5, 81.4 (C-3B, C-4B), 77.7, 76.8 (C-2B, C-6A), 73.0, 72.5, 72.1 (C-2A, C-3A, C-5A), 70.3 (C-4A), 69.4 (OC_H₂CH₂CH₃), 67.0 (C-5B), 59.6 (OCH₃-6A), 58.9 (OCH₃-2B), 58.2 (OCH₃-3A), 57.1 (${}^{1}J_{13}_{CH}$ 141 Hz, ${}^{3}J_{13}_{CH-3}$ 4 Hz, $O^{13}CH_3$ -3B), 22.7 ($OCH_2CH_2CH_3$), 21.0, 20.8 $(2 \times CH_3CO)$, 17.8(C-6B), 10.6 (OCH₂CH₂CH₃).

Propyl 4-O-(2,4-di-O-acetyl-3,6-di-O- 13 C-methyl- β -D-glucopyranosyl)-2,3-di-O-methyl- α -L-rhamnopyranoside (22).—Glycosylation of the acceptor 15 (55 mg, 0.24 mmol) with the trichloroacetimidate 9 (94 mg, 0.22 mmol) was performed as described for the preparation of disaccharide 20. Disaccharide 22 was purified by chromatography (EtOAc-hexanes, 1:1) and was isolated as a syrup (78 mg, 71%), $[\alpha]_D^{22}$ -50.3° (c 2.3, CH₂Cl₂). ¹H NMR: δ 4.98 (t, 1 H, $J_{4,3} + J_{4,5} = 18$ Hz, H-4A), 4.90 (dd, 1 H, $J_{2,1}$ 8 Hz, $J_{2,3}$ 10 Hz, H-2A), 4.82 (d, 1 H, $J_{1,2}$ 2 Hz, H-1B), 4.76 (d, 1 H, H-1A), 3.48 (s, 3 H, OCH₃), 3.38 (d, 3 H, ${}^{1}J_{13_{CH}}$ 141 Hz, $O^{13}CH_{3}$), 3.32 (d, 3 H, ${}^{1}J_{13_{\text{CH}}}$ 142 Hz, O¹³CH₃), 3.49 (s, 3 H, OCH₃-2B), 3.34 (dt, 1 H, OCH_a H_b CH₂CH₃), 2.10, 2.08 (2s, 2×3 H, $2\times$ CH₃CO), 1.59 (m, 2 H, OCH₂CH₂CH₃), 1.24 (d, 3 H, H-6B), 0.92 (t, 3 H, $OCH_2CH_2CH_3$). ¹³C NMR: δ 169.6, 169.3 (2×C=O), 101.0 (C-1A), 96.6 (C-1B), 81.5, 81.4 (C-3B, C-4B), 77.7, 76.8 (C-2B, C-6A), 73.0, 72.4, 72.1 (C-2A, C-3A, C-5A), 70.7 (C-4A), 69.4, 67.0 (C-5B), 59.6 (qt, ${}^{1}J_{13_{CH}}$ 141 Hz, ${}^{3}J_{13_{\text{CH-6A}}}$ 4 Hz, O¹³CH₃-6A), 58.9 (OCH₃-2_B), 58.2 (qd, ${}^{1}J_{13_{\text{CH}}}$ 142 Hz, ${}^{3}J_{13_{\text{CH}3A}}$ 6 Hz, ${}^{O^{13}\text{CH}_{3}}$ 3A), 58.0 (OCH₃-3B), 22.7 (OCH₂CH₂CH₃), 21.0, 20.9 (CH₃CO), 17.8 (C-6B), 10.6 (OCH₂CH₂CH₃). Anal. Calcd for $C_{21}^{13}C_2H_{40}O_{12}$: C, 54.10; H, 7.91. Found: C, 54.21; H, 8.09.

Propyl 4-O-(2,4-di-O-acetyl-3,6-di-O- 13 C-methyl-β-D-glucopyranosyl)-2-O-methyl-3-O- 13 C-methyl-α-L-rhamnopyranoside (23).—Glycosylation of the

acceptor 16 (58 mg, 0.25 mmol) with the trichloroacetimidate 9 (110 mg, 0.25 mmol) was performed as described for the preparation of disaccharide 20. Chromatography (EtOAc-hexanes, 1:1) gave the disaccharide 23 as a syrup (0.12 g, 100%). $[\alpha]^{22}$ _D -51.5° (c 2.3, CH₂Cl₂). ¹H NMR: δ 4.98(t, 1 H, $J_{4,3} + J_{4,5} = 18 \text{ Hz}, \text{ H-4A}, 4.90 \text{ (dd, 1 H, } J_{2,1} \text{ 8 Hz},$ $J_{2,3}$ 10 Hz, H-2A), 4.82 (d, 1 H, $J_{1,2}$ 2 Hz, H-1B), 4.76 (d, 1 H, H-1A), 3.61 (dt, 1 H, $OCH_aH_bCH_2CH_3$), 3.44 (d, 3 H, ${}^1J_{13_{C-H}}$ 141 Hz, $O^{13}CH_3$), 3.38 (d, 3 H, ${}^{1}J_{13_{CH}}$ 141 Hz, $O^{13}CH_3$), 3.32(d, 3 H, ${}^{1}J_{13_{CH}}$ 142 Hz, $O^{13}CH_3$), 3.49 (s, 3 H, OCH₃-2B), 3.34 (dt, 1 H, OCH_aH_bCH₂CH₃), 2.10, 2.08 (2s, 2×3 H, $2\times\text{CH}_3\text{CO}$), 1.59 (m, 2 H, $OCH_2CH_2CH_3$), 1.24 (d, H-6B), 0.92 (t, 3 H, OCH₂CH₂CH₃). ¹³C NMR: δ 169.6, 169.3(C = O), 101.0 (C-1A), 96.6 (C-1B), 81.5, 81.4 (C-3B, C-4B), 77.7, 76.8 (C-2B, C-6A), 73.0, 72.4, 72.1 (C-2A, C-3A, C-5A), 70.3 (C-4A), 69.4 (OCH₂CH₂CH₃), 67.0 (C-5B), 59.6 (qt, ${}^{1}J_{13_{\text{C,H}}}$ 141 Hz, ${}^{3}J_{13_{\text{C,6A}}}$ 4 Hz, $O^{13}CH_3-6A)$, 58.9 (OCH₃-2B), 58.2 (${}^{1}J_{13_{CH}}$ 142 Hz, ${}^{3}J_{13_{\text{C,3A}}}$ 6 Hz, O¹³CH₃-3A), 57.1 (qd, ${}^{1}J_{13_{\text{C,H}}}$ 141 Hz, ${}^{3}J_{13_{C,3B}}^{1}$ 5 Hz, ${\rm O}^{13}{\rm CH}_{3}$ -3B), 22.7 (OCH₂CH₂CH₃), 23.0, 20.9 (2×*C*H₃CO), 17.8 (C-6B), 10.6 (OCH₂CH₂CH₃). Anal. Calcd for $C_{20}^{13}C_3H_{40}O_{12}$: C, 54.10; H, 7.90. Found C, 54.35; H, 7.85.

Propyl 4-O-(3,6-di-O-methyl- β -D-glucopyranosyl)-2,3-di-O-methyl- α -L-rhamnopyranoside (24).— A solution of the protected disaccharide 20 (410 mg, 0.81 mmol) in methanolic sodium methoxide (0.3 N, 4 mL) was stirred for 2h at room temperature and neutralized with Dowex 50W-X8(H⁺) resin. The resin was filtered off, rinsed with MeOH (5 mL) and the combined supernatant and washings were concentrated. Chromatography (EtOAc-hexanes-MeOH, 6:6:1) of the residue gave the disaccharide 24 that crystallized on standing $(291 \text{ mg}, 85\%), \text{ mp } 52-54^{\circ}\text{C}, [\alpha]^{22}_{D} -53^{\circ} (c \ 0.6,$ CH_2Cl_2) [lit [6]., $[\alpha]^{26}_D$ -46.1° (c 1.2, CHCl₃)]. ¹H NMR: δ 4.81 (d, 1H, $J_{1.2}$ 2 Hz, H-1B), 4.40 (d, 1H, $J_{1,2}$ 8 Hz, H-1A), 3.67 (s, 3H, OCH₃), 3.64 (H-5B), 3.63 (m, 2H, H-6A, H-6'A), 3.62 (m, 3H, H-2B, H-3B, H-4B), 3.59 (dt, 1H, OC*H*_aH_bCH₂CH₃), 3.52 (t, 1H, $J_{4,3} + J_{4,5} = 18 \text{ Hz}$, H-4A), 3.48 (s, 3H, OCH₃), 3.46 (s, 3H, OCH₃), 3.41 (m, 1H, H-5A), 3.38 (s, 3H, OCH₃), 3.15 (t, 1H, $J_{3,2} + J_{3,4} = 20$ Hz, H-3A), 3.35 (dt, 1H, OCH_aH_bCH₂CH₃), 1.57 $(OCH_2CH_2CH_3)$, 1.34 (d, 3H, H-6B), 0.90 $(OCH_2CH_2CH_3)$. ¹³C NMR: δ 105.6 (¹ $J_{C,H}$ 159 Hz, C-1A), $96.8(^{1}J_{C,H})$ 168 Hz, C-1B), 85.6 (C-3A), 81.8 (C-3B), 80.7 (C-4B), 76.0 (C-2B), 75.0 (C-2A), 74.2

(C-5A), 72.8 (C-6A), 71.2 (C-4A), 69.3 (O $CH_2CH_2CH_3$), 67.5 (C-5B), 60.4, 59.5, 59.0, 56.4(4×O CH_3), 22.7 (O $CH_2CH_2CH_3$), 17.5 (C-6B), 10. 6 (O $CH_2CH_2CH_3$). Anal. Calcd for $C_{19}H_{36}O_{10}$: C, 53.75; H, 8.56. Found: C, 53.64; H, 8.62.

Propyl 4-O-(3,6-di-O-methyl-β-D-glucopyranosyl)-2-O-methyl-3-O-¹³C-methyl-α-L-rhamnopyranoside (25).—Deacetylation of disaccharide 21 (193 mg, 0.38 mmol) was performed as described for the deprotection of disaccharide 20. Chromatography (EtOAc-hexanes-MeOH, 4:4:1) gave the disaccharide 25 as a colorless syrup (161 mg, 100%), $[\alpha]^{22}_{D}$ –51.6° (c 1.2, CH₂Cl₂). ¹H NMR: δ 4.81 (d, 1H, $J_{1.2}$ 1.5 Hz, H-1B), 4.40 (d, 1H, $J_{1.2}$ 7.5 Hz, H-1A), 3.45 (d, ${}^{1}J_{13_{CH}}$ 142 Hz, O¹³CH₃-3B), 3.66 (s, 3H, OCH₃), 3.62 (m, 7H, overlapped, H-6A, H-6'A,H-2B, H-3B, H-4B, $OCH_aH_bCH_2CH_3$), 3.53 (t, $J_{4,3}+J_{4,5}=20$ Hz, H-4A), 3.47 (s, 3H, OCH₃), 3.46–3.37(m, 2H, overlapped, H-2A, H-5A), 3.37 (s, 3H, OCH₃), 3.35 (dt, 1H, OCH_a H_b CH₂CH₃), 3.15 (t, 1H, $J_{2,3}+J_{3,4}=$ 18 Hz, H-3A), 1.57 (m, 2H, OCH₂CH₂CH₃), 1.34 (d, 3H, H-6B), 0.90 (t, 3H, $OCH_2CH_2CH_3$). ¹³C NMR: δ 105.6 (${}^{1}J_{\text{C,H}}$ 161 Hz, C-1A), 96.9(${}^{1}J_{\text{C,H}}$ 168 Hz, C-1B), 85.6 (C-3A), 81.9 (C-3B), 80.7 (C-4B), 76.1 (C-2B), 75.1 (C-2A), 74.2 (C-5A), 72.9 (C-6A), 71.2 (C-4A), 69.3 (OCH₂CH₂CH₃), 67.6 (C-5B), 60.4, 59.6, 59.0 $(3\times OCH_3)$, 56.4 (qd)142 Hz, ${}^{3}J_{13_{\text{C.H-3B}}}$ $^{1}J_{13_{
m C,H}}$ 3 Hz, $O^{13}CH_3-3B)$, 17.5 $(OCH_2CH_2CH_3),$ (C-6B), $(OCH_2CH_2CH_3)$. Anal. Calcd for $C_{18}^{13}C_1H_{36}O_{10}$: C, 53.62; H, 8.54. Found: C, 53.49; H, 8.67.

Propyl 4-O-(3,6-di-O-¹³C-methyl-β-D-glucopyranosyl) - 2,3 - di - O - methyl - α - L - rhamnopyranoside(26).—Deacetylation of disaccharide 22 (78 mg, 0.15 mmol) was performed as described for the deprotection of disaccharide 20. Chromatography (EtOAc-hexanes-MeOH, 6:6:1) gave the disaccharide 26 as a colorless syrup (58 mg, 89%), $[\alpha]^{22}_{D}$ -45° (c 0.6, CH₂Cl₂). ¹H NMR: δ 4.82 (d, 1H, $J_{1,2}$ 1.5 Hz, H-1B), 4.40 (d, 1H, $J_{1,2}$ 8 Hz, H-1A), 3.68–3.48 (m, 6H, overlapped, H-6A, H-6'A, H-2B, H-3B, H-4B, H-5B), 3.59 (dt, 1H, $OCH_aH_bCH_2CH_3$, 3.53 (H-4A), 3.41(m, 2H, overlapped, H-2A, H-5A), 3.67 (d, 3H, ${}^{1}J_{13_{\text{CH}}}$ 142 Hz, $O^{13}CH_3$), 3.38 (d, 3H, ${}^{1}J_{13_{CH}}$ 142 Hz, O¹³CH₃), 3.48 (s, 3H, OCH₃), 3.46 (s, 3H, OCH₃), 3.35 (dt, 1H, OCH_a H_b CH₂CH₃), 3.16 (tt, 1H, $J_{3,2} + J_{3,4} = 18 \text{ Hz}, \quad {}^{3}J_{13_{\text{C.H}}} \quad 5 \text{ Hz}, \quad \text{H-3A}),$ $(OCH_2CH_2CH_3)$, 1.34 (d, 3H, H-6_B), 0.91 $(OCH_2CH_2CH_3)$. ¹³C NMR: δ 105.7 (¹ $J_{C,H}$ 160 Hz,

C-1A), 96.9 (${}^{1}J_{\text{C,H}}$ 167 Hz, C-1B), 85.6 (C-3A), 81.9 (C-3B), 80.7 (C-4B), 76.0 (C-2B), 75.1 (C-2A), 74.1 (C-5A), 72.9 (C-6A), 71.3 (C-4A), 69.3 (OCH₂CH₂CH₃), 67.5 (C-5B), 60.4 (qd, ${}^{1}J_{13_{\text{C,H}}}$ 142 Hz, ${}^{3}J_{13_{\text{C,H-3A}}}$ 5 Hz, O¹³CH₃-3A), 59.6 (qt, ${}^{1}J_{13_{\text{C,H}}}$ 142 Hz, ${}^{3}J_{13_{\text{C,H-6A}}}$ 4 Hz, O¹³CH₃-6A), 59.0 (OCH₃-2B), 56.4(OCH₃-3B), 22.7 (OCH₂CH₂CH₃), 17.5 (C-6B), 10.6 (OCH₂CH₂CH₃).. Anal. Calcd for C₁₇¹³C₂H₃₆O₁₀: C, 53.50; H, 8.52. Found: C, 53.70; H, 8.40.

Propyl 4-O-(3,6-di-O- 13 C-methyl-β-D-glucopyranosyl)-2-O-methyl-3-O- 13 C-methyl- α -L-rhamnopyranoside (27).—Deacetylation of disaccharide 23 (66 mg, 0.13 mmol) was performed as described for the deprotection of disaccharide 20. Chromatography (EtOAc-hexanes-MeOH, 6:6:1) gave the disaccharide 27 as a colorless syrup (58 mg, 100%), $[\alpha]^{22}_{D}$ -44° (c 0.8, CH₂Cl₂). ¹H NMR: δ 4.82 (d, 1H, $J_{1,2}$ 1.5 Hz, H-1B), 4.40 (d, 1H, $J_{1,2}$ 8 Hz, H-1A), 3.68–3.48 (m, 6H, overlapped, H-6A, H-6'A, H-2B, H-3B, H-4B, H-5B), 3.59 (dt, 1H, $OCH_aH_bCH_2CH_3$), 3.53 (m, 1H, H-4A), 3.41 (m, 2H, H-2A, H-5A), 3.67 (d, 3H, ${}^{1}J_{13_{CH}}$ 142 Hz, $O^{13}CH_3$), 3.46 (d, 3H, ${}^1J_{13_{CH}}$ 142 Hz, $O^{13}CH_3$), 3.38 (d, 3H, ${}^1J_{13_{CH}}$ 142 Hz, $O^{13}CH_3$), 3.48 (s, 3H, OCH₃), 3.35(dt, 1H, OCH_aH_bCH₂CH₃), 3.16 (dt, 1H, $J_{3,2} + J_{3,4} = 9.0 \text{ Hz}$, ${}^3J_{13_{\text{CH}}}$ 5 Hz, H-3A), 1.57 (OCH₂CH₂CH₃), 1.34 (d, 3H, H-6B), 0.91 $(OCH_2CH_2CH_3)$. ¹³C NMR: δ 105.7 (¹ $J_{C,H}$ 158 Hz, C-1A), 96.8 (${}^{1}J_{C,H}$ 168 Hz, C-1B), 85.6 (C-3A), 81.9 (C-3B), 80.7 (C-4B), 76.0(C-2B), 75.1 (C-2A), 74.1 (C-5A), 72.9 (C-6A), 71.3 (C-4A), 69.3 $(OCH_2CH_2CH_3)$, 67.5 (C-5B), 60.4 (qd, ${}^{1}J_{13_{CH}}$ 142 Hz, ${}^{3}J_{13_{\text{CH-3A}}}$ 5 Hz, O¹³CH₃-3A), 59.6 (qt, ${}^{1}J_{13_{\text{CH}}}$ 142 Hz, ${}^{3}J_{13_{\text{C,H-6A}}}$ 4 Hz, O¹³CH₃-6A), 59.0 (OCH₃-2B), 56.4 (qd, ${}^{1}J_{13_{\text{C,H}}}$ 142 Hz, ${}^{3}J_{13_{\text{C,H-3B}}}$ 3 Hz, O¹³CH₃-3B), 22.8 (OCH₂CH₂CH₃), 17.5(C-6B), $(OCH_2CH_2CH_3)$. Anal. Calcd $C_{16}^{13}C_3H_{36}O_{10}$: C, 53.37; H, 8.50. Found: C, 53.55; H, 8.54.

Allyl 2-O-(4-O-acetyl-2,3-di-O-methyl-α-L-rhamnopyranosyl)-4-O-benzyl-3-O-methyl-α-L-rhamnopyranoside (28).—A solution of the allyl glycoside 11 (2.1 g, 6.7 mmol) in 95% aq AcOH (120 mL) containing palladium (II) chloride (1.4 g, 8.0 mmol), and NaOAc (1.6 g, 20 mmol) was stirred for 48 h at room temperature. The reaction mixture was filtered, extracted with CH₂Cl₂ (3×50 mL), and the extracts were washed successively with water (2×40 mL), satd aq NaHCO₃ (4×40 mL), satd NaCl (2×40 mL), then combined, dried and concentrated. Chromatography (EtOAc–hexanes,

1:1) of the residue gave an anomeric mixture 4-Obenzyl-2,3-di-O-methyl- α,β -L-rhamnose (17) as a colorless syrup (1.7 g, 99%). Crystallization from EtAc-hexanes (1:8) gave white crystals that were estimated by NMR to be a 2:1 mixture of the α and β -pyranoses. ¹H NMR: δ 7.32 (m, 5 H, Ar), 5.26 (bs, 1 H α , H-1 α), 4.90, 4.89, 4.61, 4.60 (4 d, 2 $H \alpha$, 2 $H\beta$, OCH₂Ph), 4.65 (bs, 1 $H\beta$, H-1 β), 3.43 (dd, 1 H α , $J_{4,3} + J_{4,5} = 18$ Hz, H-4 α), 3.38 (dd, 1 $H\beta$, $J_{4,3} + J_{4,5} = 18 Hz$, $H-4\beta$), 1.32 (d, 1 $H\beta$, $J_{5,6}$ 6 Hz, H-6 β), 1.28 (d, 1 H α , $J_{6.5}$ 6 Hz, H-6 α). ¹³C NMR: δ 138.8, 128.4, 128.3, 127.9, 127.8, 127.6 (Ar), 93.6 ($J_{C,H}$ 162 Hz, C-1 β), 92.0 ($J_{C,H}$ 172 Hz, C-1 α), 61.8 (OCH₃- β), 59.2 (OCH₃- α), 58.1 $(OCH_3-\beta)$, 57.8 $(OCH_3-\alpha)$, 18.0 $(C-6\alpha)$, 17.9 $(C-6\alpha)$ (6β) . The anomeric mixture 17 (1.6 g, 6.0 mmol) was hydrogenolyzed as described for the hydrogenolysis of 14. Chromatography (EtAc-hexanes-MeOH, 4:4:1) gave the hemiacetal 18 as a syrup (1.1 g, 90%). Compound **18** (0.88 g, 4.6 mmol) was acetylated as described for the preparation of 4 to give 1,4-di-O-acetyl-2,3-di-O-methyl- α , β -L-rhamnopyronose (19) that, after chromatography (EtAc-hexanes, 1:1), gave an α : β (7:1) mixture as a syrup (0.97 g, 76%). ¹H NMR: δ 6.17 (d, 1 H α , $J_{1,2}$ 2 Hz, H-1 α), 5.60 (d, 1 H β , $J_{1,2}$ 1 Hz, H-1 β), 5.08 (t, 1 H α , $J_{4,3}$ 10 Hz, $J_{4,5}$ 10 Hz, H-4 α), 4.99 (t, 1 H β , $J_{4,3}$ 10 Hz, $J_{4,5}$ 10 Hz, H-4 β), 3.79 (m, 1 H α , H-5 α), 3.75 (dd, 1 H β , $J_{2,3}$ 3 Hz, H-2 β), 3.61 (dd, 1 $H\alpha$, $J_{2,3}$ 3 Hz, H-2 α), 3.59 (s, 3 H β , OCH₃), 3.54 (dd, 1 H α , H-3 α), 3.52 (s, 3 H α , OCH₃), 3.47 (m, $H\beta$, H-5 β), 3.43 (s, 3 $H\alpha$, OCH₃), 3.39 (s, 3 $H\beta$, OCH₃), 3.28 (dd, 1 H β , H-3 β), 2.65, 2.42 (2s, 2×3 $H\alpha$, CH_3CO), 2.13, 2.05 (2s, 2×3 $H\beta$, CH_3CO), 1.91 (d, 3 H α , $J_{6,5}$ 6 Hz, H-6 α), 1.20 (d, 3 H β , $J_{6,5}$ 6 Hz, H-6 β). ¹³C NMR: δ 169.7, 168.9, 169.1 (C=O), 93.0 $(C-1\beta)$, 91.3 $(C-1\alpha)$, 81.3 $(C-3\beta)$, 78.5 $(C-3\alpha)$, 76.2 $(C-2\beta)$, 76.0 $(C-2\alpha)$, 72.1 $(C-4\beta)$, 7.20 $(C-4\alpha)$, 7.15 $(C-5\beta)$, 69.2 $(C-5\alpha)$, 61.4, 59.2, 57.7, 57.8 ()CH³), 29.6, 21.0, 20.9 (CH₃CO), 17.5 (C-6 α), 17.4 (C-6 β). A mixture of the acceptor 12 (327 mg, 1.1 mmol), the donor **19** (333 mg, 1.2 mmol) and activated molecular sieves (4A) in anhydrous CH₂Cl₂ (50 mL) was stirred for 1 h under N₂ and BF₃-Et₂O ($60 \mu L$, 0.22 mmol) was added to the mixture. The reaction was allowed to proceed for 16h at room temperature and was quenched by addition of NEt₃ (\sim 25 μ L). The molecular sieves were removed by filtration, rinsed with CH₂Cl₂ (10 mL), and the combined supernatant and washings were concentrated. Chromatography (EtOAc– hexanes, 1:1) of the residue gave disaccharide 28 (542 mg, 97%) that was isolated as white crystals from EtOH-hexanes, mp 109–110 °C, $[\alpha]^{22}_{D}$ –65.6° (c 0.7, CH₂Cl₂). ¹H NMR: δ 7.36 (m, 5 H, Ar), 5.87 (m, 1 H, $OCH_2CH = CH_2$), 5.23 (m, 2 H, $OCH_2CH = CH_2$), 5.10 (d, 1 H, $J_{1,2}$ 2 Hz, H-1B), 5.03 (t, 1 H, $J_{4,3} + J_{4,5} = 20$ Hz, H-4B), 4.88 (d, 1 H, J 11 Hz OCHHPh), 4.77 (d, 1 H, $J_{1,2}$ 2 Hz, H-1C), 4.63 (d, 1 H, OCH*H*Ph), 4.06 (dd, 1 H, *J*_{2,3} 3 Hz, H-2C), 4.04 (m, 2 H, OC H_2 CH = CH₂), 3.72 (dd, 1 H, $J_{2,3}$ 3 Hz, H-2B), 3.76 (m, 1 H, H-5B), 3.69 (m, 1 H, H-5C), 3.62 (dd, 1 H, $J_{3.4}$ 10 Hz, H-3C), 3.56 (dd, 1 H, $J_{3.4}$ 10 Hz, H-3B), 3.52, 3.48, 3.44 (3s, $3\times3H$, $3\timesOCH_3$), 3.37 (t, 1 H, $J_{4,3}+J_{4,5}=20$ Hz, H-4C), 2.05 (s, 3 H, CH₃CO), 1.30 (d, 3 H, H-6C), 1.15 (d, 3 H, H-6B). ¹³C NMR: δ 169.9 (C=O), 133.8 (OCH₂CH = CH₂), 138.6, 128.4, 128.0, 127.7 (Ar), 117.4 (OCH₂CH = $C_{\rm H}$ 2), 99.2 (${}^{1}J_{\rm C,H}$ 171 Hz, C-1B), 98.1 (${}^{1}J_{CH}$ 170 Hz, C-1C), 81.9 (C-3C), 80.2 (C-4C), 78.7 (C-3B), 75.0 (OCH₂Ph), 77.1 (C-2B), 74.1 (C-2C), 73.1 (C-4B), 67.9, 67.8, 67.1 (C-5B, C-5C, $OCH_2CH = CH_2$), 59.1, 57.9, 57.8(2×OCH₃), 21.0 (CH₃CO), 17.9 (C-6C), 17.5 (C-6B). Anal. Calcd for $C_{27}H_{40}O_{10}$: C, 61.80; H, 7.70. Found: C, 62.01; H, 7.85.

Allyl 2-O-(2,3-di-O-methyl-α-L-rhamnopyranosyl)-4-O-benzyl-3-O-methyl-\alpha-L-rhamnopyrano-side (29).—Deacetylation of disaccharide 28 (397 mg, 0.76 mmol) was performed as described for the deprotection of disaccharide 20. Chromatography (EtOAc-hexanes-MeOH, 4:8:1) gave the disaccharide 29 as a colorless syrup (242 mg, 66%), $[\alpha]^{22}_{D}$ -62.8° (c 0.8, CH₂Cl₂). ¹H NMR: δ 7.32 (m, 5 H, Ar), 5.87 (m, 1 H, $OCH_2CH = CH_2$), 5.22 (m, 2 H, OCH₂CH = C H_2), 5.13 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1B), 4.87 (d, 1 H, *J* 11 Hz, OC*H*HPh), 4.78 (d, 1 H, $J_{1.2}$ 1.5 Hz, H-1C), 4.63 (d, 1 H, OCH*H*Ph), 4.07 (dd, 1 H, $J_{2,3}$ 3 Hz, H-2C), 4.04 (m, 2 H, $OCH_2CH = CH_2$), 3.73 (dd, 1 H, $J_{2,3}$ 3 Hz, H-2B), 3.68 (m, 2 H, H-5B, H-5C), 3.62 (dd, 1 H, $J_{3,4}$ 9.5 Hz, H-3C), 3.56 (t, 1 H, $J_{4.3} + J_{4.5} = 19$ Hz, H-4B), 3.50, 3.49 (2s, 3 H and 6 H, 3×OCH₃), 3.45 (dd, $J_{3,4}$ 9.5 Hz, H-3B), 3.36 (t, 1 H, $J_{4,3} + J_{4,5} = 19$ Hz, H-4C), 1.30 (d, 3 H, H-6C), 1.29 (d, 3 H, H-6B). ¹³C NMR: δ 133.8 (OCH₂CH = CH₂), 138.7, 128.3, 128, 127.7 (Ar), 117.4 (OCH₂CH = CH_2), 98.9 (${}^{1}J_{C,H}$ 163 Hz, C-1B), 98.1 (${}^{1}J_{\text{C,H}}$ 165 Hz, C-1C), 82.0 (C-3C), 80.9 (C-3B), 80.2 (C-4C), 76.0 (C-2B), 75.0 (OCH₂Ph), 73.7 (C-2C), 71.7 (C-4B), 68.7, 67.9, 67.8 (C-5B, C-5C, $OCH_2CH = CH_2$), 58.8 (OCH_3 -2B), 57.9 (OCH₃-3C), 57.0 (OCH₃-3B), 18.0, 17.7 (C-6B, C-6C). Anal. Calcd for C₂₅H₃₈O₉: C, 62.21; H, 7.95. Found: C, 62.00; H, 8.03.

Allyl 2-O-[4-O-(2,4-di-O-acetyl-3,6-di-O-methyl- β -D-glucopyranosyl)-2,3-di-O-methyl- α -L-rhamnopyranosyl]-4-O-benzyl-3-O-methyl-\alpha-L-rhamnopyranoside (30).—A mixture of the acceptor 29 (211 mg, 0.44 mmol), the trichloroacetimidate 8 (237 mg, 0.54 mmol) and activated molecular sieves (4A) in anhydrous CH₂Cl₂ (20 mL) was stirred for 5h under N_2 . The mixture was cooled to -78 °C and TESOTf (20 µL, 0.08 mmol) was added. After stirring for 20 min at -78 °C, the reaction was allowed to proceed for 30 min at room temperature and was quenched by addition of triethylamine $(\sim 25 \,\mu\text{L})$. The molecular sieves were removed by filtration, rinsed with CH₂Cl₂ (10 mL), and the combined supernatant and washings were concentrated. Chromatography (EtOAc-hexanes-MeOH, 4:8:1) of the residue gave the disaccharide **30** as a colorless oil (330 mg, 100%), $[\alpha]^{22}_{D}$ -63.7° (c 0.3, CH₂Cl₂). ¹H NMR: δ 7.35 (m, 5 H, Ar), 5.87 (m, 1 H, $OCH_2CH = CH_2$), 5.23 (m, 2 H, $OCH_2CH = CH_2$), 5.17 (d, $J_{1,2}$ 2 Hz, H-1B), 4.98 (t, 1 H, $J_{4,3} + J_{4,5} = 19$ Hz, H-4A), 4.89(dd, 1 H, $J_{2,1}$ 8 Hz, J_{2,3} 10 Hz, H-2A), 4.86 (d, 1 H, J 11 Hz, OC*H*HPh), 4.76 (d, 1 H, H-1A), 4.74 (d, 1 H, $J_{1,2}$ 2 Hz, H-1C), 4.64 (d, 1 H, OCH*H*Ph), 4.11 (m, 2 H, $OCH_2CH = CH_2$), 4.10 (dd, 1 H, $J_{2,3}$ 3 Hz, H-2C), 3.73–3.56 (m, 6 H, H-6A', H-6A, H-2B, H-5B, H-3C, H-5C), 3.50–3.47 (m, 2 H, H-3B, H-4B), 3.50, 3.48, 3.47, 3.38, 3.32 (5s, 5×3 H, $5 \times OCH_3$), 3.40–3.38 (m, 2 H, H-3A, H-5A), 3.37 (t, 1 H, J 8 Hz, J 7 Hz, H-4C), 2.70, 2.40 (2s, 2×3 H, $2\times CH_3CO$), 1.32, 1.25 (m, 2 H, H-6B, H-6C). ¹³C NMR: δ 169.6, 169.1 $(2\times C=0)$, 133.8 $(OCH_2CH = CH_2)$, 138.7, 128.3, 128.0, 127.7 (Ar), 117.5 (OCH₂CH = CH_2), 100.9 (C-1A), 98.2, 98.1 (C-1B, C-1C), 82.3 (C-3C), 81.5, 80.9 (C-3B, C-4B), 80.2 (C-4C), 77.5, 76.9 (C-2B, C-6A), 75.0 (OCH₂Ph), 73.1, 72.8, 72.3, 72.2 (C-2A, C-3A, C-5A, C-2C), 70.2 (C-4A), 67.9, 67.8, 67.7 (C-5B, C-5C, $OCH_2CH = CH_2$), 59.6, 58.87, 58.1, 57.9, 57.3 (5 x OCH3), 21.0, 20.9 (2×CH₃CO), 18.0, 17.8 (C-6B, C-6C). Anal. Calcd for C₃₇H₅₆O₁₆: C, 58.71; H, 7.47. Found: C, 58.49; H, 7.37.

Allyl 2-O-[4-O-(3,6-di-O-methyl-β-D-glucopyr-anosyl)-2,3-di-O-methyl-α-L-rhamnopyranosyl]-4-O-benzyl-3-O-methyl-α-L-rhamnopyranoside (31).—Deacetylation of trisaccharide 30 (371 mg, 0.44 mmol) was performed as described for the deprotection of disaccharide 20. Chromatography (EtOAc-hexanes-MeOH, 4:4:1) gave the trisaccharide 31 as a colorless syrup (214 mg, 72%), $[\alpha]_{D}^{22} -62^{\circ}$ (c 0.4, CH_2CI_2). ¹H NMR: δ 7.43 (m, 5)

H, Ar), 5.85 (m, 1 H, $OCH_2CH = CH_2$), 5.21 (m, 2 H, $OCH_2CH = CH_2$), 5.11 (d, $J_{1,2}$ 2 Hz, H-1B), 4.86 (d, 1H, *J* 11 Hz, OC*H*HPh), 4.72 (d, 1 H, *J*_{1,2} 2 Hz, H-1C), 4.62 (d, 1 H, OCH*H*Ph), 4.40 (d, 1H, $J_{1,2}$ 8 Hz, H-1A), 4.00 (m, 2 H, OC H_2 CH = CH₂), 4.04 (dd, 1 H, $J_{2,3}$ 3 Hz, H-2C), 3.74 (dd, 1 H, $J_{2,3}$ 3 Hz, H-2B), 3.67–3.50 (m, 6 H, H-6A', H-6A, H-3B, H-4B, H-5B, H-5C), 3.67 (m, 1 H, H-3C), 3.55 (m, 1 H, H-4A), 3.44 (m, 1 H, H-2A), 3.42 (m, 1 H, H-5A), 3.67, 3.50, 3.49, 3.48, 3.39 (5s, $5 \times 3H$, $5 \times OCH_3$), 3.32 (t, 1 H, $J_{4,3} + J_{4,5} = 18$ Hz, H-4C), 3.19 (t, 1 H, $J_{3,4} + J_{3,2} = 18$ Hz, H-3A), 1.32, (H-6B, H-6C). 13 C NMR: δ 133.8 1.25 $(OCH_2CH = CH_2)$, 138.6, 128.3, 127.9, 127.7 (Ar), 117.4 (OCH₂CH = CH_2), 105.5 (${}^{1}J_{C,H}$ 161 Hz, C-1A), 98.5 (${}^{1}J_{C,H}$ 171 Hz, C-1B), 98.0 (${}^{1}J_{C,H}$ 170 Hz, C-1C), 85.5 (C-3A), 82.0, 81.5, 80.3, 80.2 (C-3B, C-4B, C-3C, C-4C), 75.9, 75.0 (C-2B, C-5A), 74.0 (OCH₂Ph), 73.8 (C-2A), 73.4 (C-2C), 72.9 (C-6A), 71.2 (C-4A), 68.1, 67.9, 67.8 (C-5B, C-5C, $OCH_2CH = CH_2$), 60.3, 59.6, 58.8, 57.9, 56.4 (5×OCH₃), 18.0, 17.5 (C-6B, C-6C). Anal. Calcd for C₃₃H₅₂O₁₄: C, 58.90; H, 7.81. Found: C, 58.60; H, 8.08.

Propvl 2-O-[4-O-(3,6-di-O-methyl-β-D-glucopyranosyl)-2,3-di-O-methyl- α -L-rhamnopyranosyl]-3-O-methyl-α-L-rhamnopyranoside (32).—The trisaccharide 31 (238 mg, 0.35 mmol) was dissolved in a mixture of 80% aq AcOH-EtOH (0.8:1, 18 mL) and hydrogenolyzed for 6h at 52 psi in the presence of 10% Pd/C catalyst (78 mg). More catalyst (30 mg) was added and the reaction was allowed to proceed at 52 psi for 3 h. The catalyst was removed by filtration and the filtrate co-concentrated with toluene. The dry residue was dissolved in CH₂Cl₂ (30 mL) and the solution was washed successively with satd aq NaHCO₃ (20 mL), satd aq NaCl (20 mL), dried, and concentrated. Chromatography (EtOAc-hexanes-MeOH, 4:4:1) of the residue gave the trisaccharide 32 as a syrup (0.19 g, 90%). $[\alpha]^{22}_{D}$ –46° (c 1, CH₂Cl₂). ¹H NMR: Λ 5.06 (d, $J_{1,2}$ 2 Hz, H-1B), 4.70 (d, $J_{1,2}$ 2 Hz, H-1C), 4.40 (d, $J_{1,2}$ 8 Hz, H-1A), 4.05 (dd, $J_{2,1}$ 2 Hz, $J_{2,3}$ 2.5 Hz, H-2C), 3.70 (m, 2 H, H-2B, H-5B), 3.67 (s, 3 H, OCH₃-3A), 3.64 (m, 1 H, H-5C), 3.62 (m, 1H, H-4B), 3.61(m, 1 H, H-3B), 3.53 (t, 1 H, H-4A), 3.50 (t, 1H, H-4C), 3.48 (s, 3H, OCH₃-2B), 3.47 (s, 3H, OCH_3 -3C), 3.46 (s, 3H, OCH_3 -3B), 3.43 (m, 1 H, H-3C), 3.40 (m, 2 H, H-2A, H-5A), 3.38 (s, 3H, OCH₃-6A), 3.15 (t, J 9.5 Hz, H-3A), 3.59 $(dd, 1 H, OCH_aH_bCH_2CH_3), 3.34 (dd, 1 H,$ $OCH_aH_bCH_2CH_3$), 3.58 (m, 2H, H-6A, H-6'A), 1.59 (m, 2 H, OCH₂C H_2 CH₃), 1.32, 1.25(2d, 2×3H, H-6B, H-6C), 0.92 (t, 3H, OCH₂C H_2 C H_3). ¹³C NMR: δ 105.6 ($^{1}J_{C,H}$ 158 Hz, C-1A), 99.1 ($^{1}J_{C,H}$ 169 Hz, C-1C), 98.3 ($^{1}J_{C,H}$ 170 Hz, C-1B), 85.6 (C-3A), 81.9 (C-3C), 81.6 (C-3B), 80.3 (C-4B), 75.9 (C-2B), 75.1 (C-2A), 74.2 (C-5A), 72.9 (C-6A), 72.2 (C-2C), 72.0 (C-4C), 71.2 (C-4A), 69.2 (OCH₂CH₂CH₃), 68.2 (overlapped, C-5B, C-5C), 60.4 (OCH₃-3A), 59.6 (OCH₃-6A), 59.0 (OCH₃-2B), 57.5 (OCH₃-3C), 56.5 (OCH₃-3B), 22.7 (OCH₂CH₂CH₃), 17.7 (C-6C), 17.6 (C-6B), 10.6 (OCH₂CH₂CH₃). Anal. Calcd for C₂6H₄₈O₁₄: C, 53.40; H, 8.29. Found: C, 53.20; H, 8.28.

Acknowledgements

We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support.

References

- [1] S.W. Hunter and P.J. Brennan, *J. Bacteriol.*, 147 (1981) 728–735.
- [2] S.W. Hunter, T. Fujiwara, and P.J. Brennan, *J. Biol. Chem.*, 257 (1982) 15072–15078.
- [3] S.N. Payne, P. Draper, and R.J.W. Rees, *Int. J. Lepr.*, 50 (1982) 220–221.
- [4] S.J. Brett, P. Draper, S.N. Payne, and R.J.W. Rees, *Clin. Exp. Immunol.*, 52 (1983) 271–279.
- [5] D.B. Young, S. Dissanayake, R.A. Miller, S.R. Khanolkar, and T.M. Buchanan, J. Infect. Dis., 149 (1984) 870–873.
- [6] R. Gigg, S. Payne, and R. Contant, *J. Carbohydr. Chem.*, 2 (1983) 207–223.
- [7] T. Fujiwara, S.W. Hunter, S.N. Cho, G.O. Aspinall, and P.J. Brennan, *Infect. Immun.*, 43 (1984) 245–252.
- [8] S.N. Cho, T. Fujiwara, S.W. Hunter, R.H. Gelber, and P.J. Brennan, *J. Infect. Dis.*, 150 (1984) 311–322.
- [9] J. Gigg, R. Gigg, S. Payne, and R. Contant, *Chem. Phys. Lipids*, 35 (1985) 299–307.
- [10] J. Gigg, R. Gigg, S. Payne, and R. Contant, *Carbohydr. Res.*, 141 (1985) 91–97.
- [11] T. Fujiwara, S. Izumi, and P.J. Brennan, *Agric. Biol. Chem.*, 49 (1985) 2301–2308.
- [12] T. Fujiwara, S.W. Hunter, and P.J. Brennan, *Carbohydr. Res.*, 148 (1986) 287–298.
- [13] T. Fujiwara, G.O. Aspinall, S.W. Hunter, and P.J. Brennan, *Carbohydr. Res.*, 163 (1987) 41–52.
- [14] T. Fujiwara and S. Izumi, *Agric. Biol. Chem.*, 51 (1987) 2539–2547.

- [15] J.-R. Mariño-Albernas, V. Verez-Bencomo, L. Gonzalez-Rodriguez, and C. S. Perez-Martinez, *Carbohydr. Res.*, 165 (1987) 197–206.
- [16] D. Chatterjee, S.N. Cho, C. Stewart, J.T. Douglas, T. Fujiwara, and P.J. Brennan, *Carbohydr. Res.*, 183 (1988) 241–260.
- [17] J. Mariño-Albernas, V. Verez-Bencomo, L. Gonzalez-Rodriguez, C. S. Perez-Martinez, E. Gonzales-Abreu Castell, and A. Gonzales-Segredo, *Carbohydr. Res.*, 183 (1988) 175–182.
- [18] K. Bock, T. Hvidt, J. Marino-Albernas, and V. Verez-Bencomo, Carbohydr. Res., 200 (1990) 33– 45
- [19] K.J. Neurohr, H.H. Mantsch, N.M. Young, and D.R. Bundle, *Biochemistry*, 21 (1982) 498–503.
- [20] L. Poppe and H. van. Halbeek, *J. Magn. Reson.*, 92 (1991) 636–641.
- [21] M.J. King-Morris and A.S. Serianni, *J. Am. Chem. Soc.*, 109 (1987) 3501–3508.
- [22] C.A. Podlasek, J. Wu, W.A. Stripe, P.B. Bondo, and A.S. Serianni, J. Am. Chem. Soc., 117 (1995) 8635–8644.
- [23] T. Church, I. Carmichael, and A.S. Serianni, *Carbohydr. Res.*, 280 (1996) 177–186.
- [24] W.L. Jorgensen, Science, 254 (1991) 954–955.
- [25] M.K. Rosen, S.W. Michnick, T.J. Wandless, and S.L. Schreiber, J. Org. Chem., 56 (1991) 6262– 6264.
- [26] J.-R Mariño-Albernas, Ph.D. Thesis, University of Havana, Cuba, 1991.
- [27] T.M. Slaghek, A.H. van Oijen, A.A.M. Maas, J.P. Kamerling, and F.G. Vliegenthart, *Carbohydr. Res.*, 207 (1990) 237–248.
- [28] R.R. Schmidt, Angew. Chem. Int. Ed. Engl., 25 (1986) 212–235.
- [29] B.M. Pinto, D.G. Morissette, and D.R. Bundle, *J. Chem. Soc.*, *Perkin Trans.*, 1, (1987) 9–14.
- [30] C. Augé, S. David, and A. Veyrières, *J. Chem. Soc.*, *Chem. Commun.*, (1976) 375–376.
- [31] S. Sato, Y. Ito, T. Nukada, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.*, 167 (1987) 197–210.
- [32] (a) K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27–66; (b) K. Bock, C. Pedersen, and H. Pedersen, Adv. Carbohydr. Chem. Biochem., 42 (1984) 193–225; (c) K. Bock, and C. Pedersen, J. Chem. Soc. Perkin Trans., 2 (1974) 293–297.
- [33] A. Bax, R.H. Griffey, and B.L. Hawkins, *J. Magn. Res.*, 55 (1983) 301–315.
- [34] A. Bax and S. Subramanian, *J. Magn. Res*, 67 (1986) 565–569.
- [35] D. R. Bundle, T. Iversen, and S. Josephson, *Am. Laboratory*, 12 (1980) 93–98.
- [36] D.D. Perrin and W.L.F. Armarego, *Purification of Laboratory Chemicals*, 3rd ed., Pergamon Press, London, 1988.